A Skew-Axis Design for a 4-Joint Revolute Wrist

Craig R. Carignan Russell D. Howard

University of Maryland Space Systems Laboratory

IEEE International Conference on Robotics and Automation May 15, 2002

Outline

- Objectives
- 4-Axis Wrist Design
- Joint/Tool Workspace
- Singularities
- Inverse Kinematics
- Simulation Results
- Experiments
- Conclusions

IEEE_ICRA'02.Carignan/Howard.15-May-2002

2

Objectives

- Introduce an alternative 4-axis wrist with larger tool workspace
- Map the wrist rotational workspace and singularities
- Present inverse kinematics options for controlling the wrist
- Simulation/hardware results for wrist operation

Why a 4-Axis Wrist?

Advantages

- Singularity-free access to rotational workspace
- Avoid joint limits through "self-motion"
- Lower joint velocities than 3-axis designs
- Disadvantages
 - Additional hardware required
 - Greater computational complexity
 - More singularities in the workspace

Why a Skew Axis?

- Lower interference of the tool with the forearm extends pitch travel
- Single-sided support of the inner wrist allows for greater yaw range
- Frontal area of the wrist reduced by skew layback of pitch actuator

4-Axis Skew Wrist Design

Jointspace Comparison

4-AXIS ORTHOGONAL

4-AXIS SKEW

Toolspace Comparison

Workspace Singularities

Type I – 3 Axes Become Coplanar

Coplanar Axes	Condition
1, 2, 3	$\theta_2 = 0^{\circ}, \pm 180^{\circ}$
1, 2, 4	$\theta_2 = \pm 90^\circ \text{ or } \theta_3 = 0^\circ$
1, 3, 4	$tan(\theta_3) = -sin(\theta_2)$
2, 3, 4	$\theta_3 = 0^{\circ}, \pm 180^{\circ}$

Type II – 4 Axes Become Coplanar

$$\theta_2 = 0^{\circ}, \pm 180^{\circ}$$

& $\theta_3 = 0^{\circ}, \pm 180^{\circ}$

Manipulability Index

ISS U

Inverse Kinematics Approaches

University of Maryland

Generalized Inverse Kinematics

Inverse Kinematics Tradeoffs

Generalized Inverse

- + Automatic singularity and joint limit avoidance
- + Locally minimum joint velocities
- + Only 3-axis rotational input required
- Self-motion can be disrupting to operator
- Extended Jacobian
 - + Cyclic motion
 - + Direct control of yoke axis camera
 - + Direct control of hand roll (tool axis)
 - Manual singularity avoidance
 - Greater motion of joints is more likely to cause joint limiting

Wrist Run-In Testing

Inverse Kinematics Modes

4-DOF w/self-motion 3-DOF/Hand Roll Control

SS

Joint Limit Avoidance

CCW yaw limit during 3-DOF control; wrist transitions to 4-DOF control

Singularity Avoidance (Simulation)

Tool Roll Simulation:

- Pseudoinverse
- Pseudoinverse with self-motion

Singularity Avoidance (Experiment)

Forearm rolls to avoid singularity

Conclusions

- Skewing the pitch axis significantly increases the pitch and yaw range over the orthogonal design
- The singularity regions for the skew design are significantly more complex
- The generalized inverse method is most useful for large range of motion when singularities and joint limits are more likely to be encountered
- The extended Jacobian approach is more effective during close-proximity tasks when controlling the wrist camera and hand roll directly is critical

Acknowledgements

This research was sponsored by NASA Headquarters under NASA Cooperative Agreement NCC5-243

The Ranger Team