SPST470 - Intro to Space Mission Design: Space Robotics

Craig R. Carignan - Lead Manipulator Controls Gardell G. Gefke - Ranger Program Manager Brian J. Roberts - Ranger NBVII Integration Lead

> University of Maryland, College Park Department of Aerospace Engineering Space Systems Laboratory

> > http://www.ssl.umd.edu

Space Systems Laboratory University of Maryland

- A Brief History of Space Robotics
- On-Orbit Servicing Assets at the SSL
- Evolution of the Ranger Program
- Ranger Telerobotic Shuttle Experiment
- Manipulator Arm Development and Compliant Control Testing
- Ranger NBV Operations at SSL NBRF and NASA/MSFC NBS
- Ranger NBVII Dexterous Arm Integration and Testing

What are the Unknowns in Space Robotics?

History of Space Robotics

Mission	Year	Agency	Vehicle	Location
Canadarm	1982	CSA/SPAR	STS-2+	SS cargo
ROTEX	1993	ESA/DLR	STS-55	SpaceLab2
Charlotte	1995	NASA/MDAC	STS-63	SpaceHab3
MFD	1997	NASDA/Toshiba	STS-85	SS cargo

Space Systems Laboratory University of Maryland S

"Mobile" Space Robots

	Mission	Year	Agency		Vehicle	Location	
	ETS-VII	1997	NASDA/Tos	hiba	H-1	LEO	
	MSS	2001+	CSA/MDRob	ootics	STS-100+	ISS	
	RangerTSX	200X	NASA/UM		STS-???	SS cargo	bay
	Robonaut	200X	NASA/JSC		STS-?,ISS	EVA	
Expe	erimental Test Satellite #7 (ETS-VII)	Mo	bile Servicing ystem (MSS)	Ran Shut	ger Telerobo ttle Experime (RTSX)	otic ent	Robonaut"
26-MA	AR-2002 Space	Robotics.UND	-SPST-470	5		Space Syster Universit	ns Laboratory sy of Maryland

Ranger-Class Space Robots

How the Operator Interacts with the Robot

		Locally Teleoperated	Remote (Ground) Teleoperated	Supervisory/ Autonomous Control
How the Robot Interacts with the Worksite	Specialized Robotic Interfaces	SSRMS MFD MSS/SPDM	Charlotte IVA	ROTEX ETS-VII
	EVA Compatible Interfaces		Ranger TSX	
	Human Compatible Interfaces	Robonaut		

On-Orbit Servicing at SSL

•

- Development and testing of multiple complete robotic systems capable of performing complex space tasks end-to-end:
 - Docking
 - Assembly
 - Inspection
 - Maintenance
- Facility for evaluating systems in a simulated 6 degree-offreedom (DOF) microgravity environment

- Expertise:
 - Autonomous control of multiple robotic systems
 - Design of dexterous robotic manipulators
 - Adaptive control techniques for vehicle dynamics
 - Use of interchangeable end effectors
 - Investigation of satellite missions benefiting most from robotic servicing

7

Why Neutral Buoyancy?

Beam Assembly Teleoperator (BAT)

- Free-flying robotic system to demonstrate assembly of an existing space structure not robot friendly:
 - 6 DOF mobility base
 - 5 DOF dexterous assembly manipulator
 - Two pairs of stereo monochrome video cameras
 - Non-articulated grappling arm for grasping the structure under assembly
 - Specialized manipulator for performing the coarse alignment task for the long struts of the truss assembly
- Operational from 1984 to 1995
- Achievements:
 - Combination of simple 1 DOF arm with dexterous 5 DOF manipulator proved to be a useful approach for assembly of a tetrahedral structure
 - Demonstrated utility of small dexterous manipulator to augment larger, less dexterous manipulator
 - Assisted in the simulated change out of spacecraft batteries of Hubble Space Telescope

9

Ranger Neutral Buoyancy Vehicle (RNBV)

- **Ranger Neutral Buoyancy** Vehicle (NBV) operational since 1994
- **Incorporated improvements** over BAT (2x7dof arms, narrower shoulder, etc.)
- **Robotic prototype testbed for** satellite inspection, maintenance, refueling, and orbit adjustment
- Demonstrated robotic tasks include ORU replacement, electrical connection, dual-arm operation, and free-flight

Ranger Telerobotic Flight Experiment (RTFX)

- Project funded by NASA's Code S and started in 1992
- Goal was to demonstrate telerobotic satellite servicing in Earth orbit
- >1000 mile orbit required for LOS communication
- High orbit and weight required a Delta-class ELV
- Redirected as a Space Shuttle launch payload in October, 1996

Ranger/Remote Manipulator System (RRMS)

- Ranger TFX at end of RMS
- \$2M to run power/data umbilical down RMS
- Two-arm contact required at all times to react loads
- Ranger failure could mean jettisoning the RMS
- Concerns with stiffness and modal excitation of RMS
- Two pilots minimum required to operate Ranger and RMS
- Complex interface effects on training, safety, and ops

Ranger Telerobotic Shuttle Experiment (TSX)

- Robot attached to a Spacelab pallet within the cargo bay of the orbiter
- Controlled from orbiter and from the ground
- SS payload eliminated need for spacecraft bus (power and communication from orbiter)
- More benevolent thermal environment in cargo bay than as unattached payload
- Robot not expended at end of mission; EVA recovery option

Ranger Flight Experiment Concept Overview

On-Orbit Control:

- Crew Operated from Middeck Locker
- SGI-based Control Station with 3 DOF Hand controllers
- AFD Switch Panel for Latches

Payload Bay Elements:

- Spacelab Pallet Carrier
- Ranger Robot
- Task Elements
- Power Distribution Equipment

Ground Control:

- Located in JSC PCC
- UMD Control Station
- Video Monitoring
- Mission Monitoring

Mission Overview

- Fundamental mission requirements are for on-orbit and ground operation of task elements
 - On-orbit control from Flight Control Station (FCS) in middeck
 - Ground control from Ground Control Station (GCS) in PCC
 - Command and telemetry link (KU-2 & KU-3) via TDRS and Orbiter comm
- Inflight operations segmented into a series of 12 (TBD) test sessions of approximately 4 hours duration per session
 - Multiple operations of various task elements
 - On-orbit and ground control
 - One crewmember required during all operations periods
- Task elements include ORUs (ISSA and HST), EVA support equipment, and taskboard items
 - Task complexity ranges from very simple to very difficult
- Orbit insensitive benign thermal environment preferred
- No planned EVA/RMS operations

Robot's Characteristics

- Body
 - Internal: main computers and power distribution
 - External: end effector storage and anchor for launch restraints
 - Head: 12" cube
- Four manipulators
 - Two dexterous manipulators
 - 5.5" diameter, 48" long
 - 8 degrees of freedom
 - 30 lb of force and 30 ft-lbf of torque at end point
 - Video manipulator
 - 5.5" diameter, 55" long
 - 7 degrees of freedom
 - Stereo video camera at end
 - Positioning leg
 - 9.5" diameter, 75" long
 - 6 degrees of freedom
 - 25 lb of force and 200 ft-lbf of torque; can withstand 250 lbf at full extension with brakes engaged

RTSX Manipulator Lineage

Task Suite

Taskboard

- Static force compliance task (spring plate)
- Dynamic force-compliant control over complex trajectory (contour task)
- High-precision endpoint control (peg-in-hole task)

Nobotic ORU task

 Remote Power Controller Module insertion/removal

- Robotic assistance of EVA
 - Articulating Portable Foot Restraint setup/tear down

- Non-robotic ORU task
 - HST Electronics Control Unit insertion/removal

Space Systems Laboratory University of Maryland

Operating Modalities

- Flight Control Station (FCS)
 - Single console
 - Selectable time delay
 - No time delay
 - Induced time delay

Ground Control Station

- Multiple consoles
- Communication time delay for all operations
- Multiple user interfaces
 - FCS equivalent interface
 - Advanced control station interfaces (3-axis joysticks, 3-D position trackers, mechanical mini-masters, and force balls)

University of Maryland

Engineering Test Units (Ranger NBVII)

- RNBV II is a fully-functional, powered engineering test unit for the RTSX flight robot. It is used for:
 - Refining hardware
 - Modifying control algorithms and developing advanced scripts
 - Verifying boundary management and computer control of hazards
 - Correlating space and neutral buoyancy operations
 - Supporting development, verification, operational, and scientific objectives of the RTSX mission
 - Flight crew training
 - An articulated non-powered mock-up is used for hardware refinement and contingency EVA training

Results of a Successful Ranger TSX Mission

Demonstration of Dexterous Robotic Capabilities

Understanding of Human Factors of Complex Telerobot Control

Pathfinder for Flight Testing of Advanced Robotics

din 6 il

Precursor for Low-Cost Free-Flying Servicing Vehicles

Lead-in to Cooperative EVA/Robotic Work Sites

Dexterous Robotics for Advanced Space Science

Testing & Operations

Ranger DXM Mkl Impedance Testing

S

Ranger DXM Mkll Integration & Testing

CLIP#2 (RNBVII – 4 DOF wrist tests)

CLIP#3 (RNBVII – DXM MkII tests)

For more images and video on Ranger NBVII integration & testing, please visit our data webpage at http://ranger.ssl.umd.edu/data/

Ranger NBVI Operations

CLIP#4 (RNBV – SSL/NBRF ops)

CLIP#5 (RNBV – NASA/MSFC ops)

